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SUMMARY

In clinical trials where several experimental treatments are of interest, the goal may be viewed as
identification of the best of these and comparison of that treatment to a standard control therapy.
However, it is undesirable to commit patients to a large-scale comparative trial of a new regimen
without evidence that its therapeutic success rate is acceptably high. We propose a two-stage design
in which patients are first randomized among the experimental treatments, and the single treatment
having the highest observed success rate is identified. If this highest rate falls below a fixed cutoff then
the trial is terminated. Otherwise, the “best” new treatment is compared to the control at a second
stage. Locally optimal values of the cutoff and the stage-1 and stage-2 sample sizes are derived by
minimizing expected total sample size. The design has both high power and high probability of
terminating early when no experimental treatment is superior to the control. Numerical results for
implementing the design are presented, and comparison to Dunnett’s (1984, in Design of Experiments:
Ranking and Selection, T. J. Santner and A. C. Tamhane (eds), 47-66; New York: Marcel Dekker)
optimal one-stage procedure is made.

1. Introduction

In clinical research there are often several experimental treatments of interest for evaluation.
The objective of a program of clinical trials in this setting may be viewed as identification
of a single most effective new treatment and determination of the merits of this treatment
relative to a standard “control” therapy. This is motivated by circumstances where there
are insufficiently many patients to conduct a large-scale trial comparing all of the experi-
mental treatments to each other and to the control. In most situations, preliminary evidence
concerning the levels of effectiveness and relative merits of the experimental treatments is
imperfect. Such evidence typically arises from uncontrolled pilot studies, often from several
different sources. In practice, judgments concerning which experimental treatment to
compare to the standard therapy in a statistically controlled clinical trial often are made in
an informal manner. These judgments are based on the pilot data and possibly also prior

Key words: Clinical trial; Early termination; Least favorable configuration; Sample size; Two-stage
design.
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information concerning the effectiveness of the standard therapy. Unfortunately, actual
differences among the experimental treatments may be confounded with systematic differ-
ences among the pilot studies. This severely limits the usefulness of such data in comparing
and evaluating the experimental treatments for the purpose of selecting one for subsequent
comparison to the control.

Still, it is generally accepted by clinicians that comparison of a single experimental
treatment to an established therapy requires a randomized clinical trial. Given some
specified Type I error rate, the sample size is determined to achieve a specified power at
some simple alternative to a composite null hypothesis. However, when this is carried out
subsequent to the type of informal selection procedure described above, the nominal power
figure may be misleadingly high. This is due to the fact that the preliminary selection
process has been ignored in the power computation.

In this paper we build upon the conventional approach described above by including the
preliminary selection process in the trial design. Our motivation arises from the desire to
obtain practical designs that avoid the confounding described earlier while controlling the
overall power of the procedure.

Formally, we consider the problem of first choosing one of K experimental treatments
and then determining whether it is superior to a control treatment C. We shall deal with
the binomial setting where each patient’s treatment response may be characterized as
success or failure, and denote by 6, the success probability of the kth experimental treatment,
with k = 0 corresponding to C. For notational convenience we assume 6, < 6, < ... < ¢
and denote 0 = (6o, 6,, ..., 0x).

The design proposed here is carried out in two stages. At the first stage, patients are
randomized equally among the K experimental treatments. The highest observed success
rate is compared to a fixed cutoff A, which is based on a prespecified estimate 5 of 6,. If
this rate is greater than or equal to A, then the corresponding “best” treatment is selected
for a subsequent randomized two-arm comparison to the control. Otherwise, the trial is
terminated. The two stages are thus essentially a selection followed by a comparative test,
with possible early termination prior to the second stage.

It is important to emphasize that we do not treat the case where it is possible to make a
decision immediately after each individual patient’s treatment response. In such a
circumstance, an adaptive allocation or selection procedure, such as a “play the winner”
rule (cf. Kulkarni and Jennison, 1986) could be considered. Such an approach may be
difficult to apply, however, in clinical trials where patient response is not observable for
weeks or months following study entry. When multiple clinical centers are involved it
would be complicated logistically to implement such an adaptive procedure, even if patient
response were immediate. The general methods proposed here, however, could be optimized
further through the use of more fully sequential methods.

The design is defined formally in Section 2. A generalized definition of power to
accommodate the particular structure of the design is introduced in Section 3. Section 4
describes derivation of the design parameters. Numerical results including specific designs
for various values of K, 8%, and overall power are presented in Section 5, and these results
are discussed in Section 6.

2. The Design

Choose constants §, and 6, so that 6, + 6, represents a marginal improvement over 6,
while 6, + 6, is a clinically significant improvement. Our proposed design is defined as
follows:

Stage 1. Randomize Kn, patients equally among the K experimental treatments. If the
most successful treatment has a proportion of successes greater than or equal to A, then it
progresses to stage 2; otherwise, the trial is terminated.
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Stage 2. Randomize an additional 2n, patients equally to C and to the treatment v
selected at stage 1. Perform a one-sided test of 6, = 6, versus 6, > 6.

For 0 <6, <8, <1 — 0§, the stage-1 power requirement is that if some 6, = % + 6, and
no 6, is between 8% + &, and 6% + 6,, then a treatment with 6, = 6% + 6, will progress to
stage 2 with probability greater than or equal to 3,. The stage-2 test is carried out with size
« and power greater than or equal to 8, for 8, = 0 and 6, = 6% + 8,. In the event that it is
concluded 6, > 6,, we shall say the experimental treatment » has been “chosen.”

Our approach is especially motivated by circumstances where most experimental thera-
pies will not provide a clinically significant improvement over the standard therapy.
Unfortunately, this situation is common in cancer clinical trials. An initial estimate 6 of
6, based on prior clinical experience with the standard treatment typically is available. This
enables us to derive a cutoff A so that the stage-1 selection procedure allows the possibility
of early termination. We include this possibility in the design because it is undesirable to
carry out a full-scale trial of a new treatment that is not reasonably promising compared to
the standard therapy. For the designs derived here, it will be seen that the numerical value
of X is approximately 6% + .10; hence, the stage-1 selection procedure depends in an
essential way on 4.

In any case, a selected experimental treatment must demonstrate a statistically significant
improvement over the standard in a full-scale randomized trial before it may be declared
a clinical improvement. Thus, the second stage must include a control arm, even though
the initial estimate 6% of 6, was used in the earlier selection process. The stage-2 test may
be carried out via a Fisher exact procedure or using normal approximations to the
distributions of the sample proportions. Performing the stage-2 test at level « is equivalent
to requiring a conditional size « for the overall procedure, given that a treatment has
progressed to stage 2. Traditionally, it is desired to ensure a size no larger than the nominal
level « regardless of what the actual value of 8 may be. Use of the conditional size here
guarantees this, since otherwise the value of A and hence 6 necessarily would be involved
in the computation of «. The actual overall size of each of the designs derived here is thus
below the nominal size, and so the procedure is conservative in this regard.

Although the two stages are carried out independently, they are connected by use of 8¢
both in determining the value of A and in the power computation at stage 2 (cf. Lachin,
1981; Casagrande, Pike, and Smith, 1978). The other connection between the two stages is
that, under a least favorable configuration of 6 to be defined below, 8, and 8, must satisfy
the constraint 3 = 3, 8., where 3 is the overall generalized power. We shall derive the values
of B, and B, along with A\, »n,, and n, in the derivation of the design for specified (.
Analogous derivations also are carried out with both 8 and 3, specified.

In order to implement the design, the values of n,, n,, and X must be determined. The
total sample size N is random, taking on the value Kn, or Kn, + 2n, as the trial either
terminates early or continues to a second stage. We shall determine the values of the design
parameters that minimize the expected sample size E(N) for given 6, = 6, subject to the
size and power constraints described above.

3. The Least Favorable Configuration

The power constraint described in the previous section deals with configurations of the
success parameters such that at least one experimental treatment is “acceptable”; i.e., some
6, = 0% + 6,, and none of the experimental treatments have success parameters in the band
(6% + 6.1, 0% + 6,). For any such configuration, we require that the probability of choosing
an acceptable treatment must be at least 5. Among this set of configurations, however, the
probability of choosing an acceptable treatment varies considerably. For example, this
probability will be great when all the experimental treatments have success probabilities
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close to unity. We define a configuration of the set to be “least favorable” if it minimizes
the probability of an acceptable choice. The general concept of least favorable configuration
(LFC) is discussed in Gibbons, Olkin, and Sobel (1977). The following theorem character-
izes the LFC for our problem.

Theorem 1 Under the above conditions, a LFC is (6%, 6% + 6,, ..., 0F + 6,, 0% + 65),
where the entry 8 + 8, is repeated K — 1 times.

A proof'is given in the Appendix. The theorem says that a LFC has only one experimental
treatment with success probability greater than or equal to 6% + 6, and its success probability
is at the lower boundary of this region. The other K — 1 experimental treatments have
success probabilities at the upper boundary of the region less than or equal to 65 + 6,.

If we require the power to be at least 8 under the LFC, where o = 6%, 6, = - -+ =04, =
0¥ 4+ 6,,and 65 = 6% + 6,, then we will have automatically assured that the power is at least
B for any configuration in which 6, = 6%, 6, & (0% + 6,, 05 + 6,) forany k=1, ..., K,
and at least one experimental treatment has 6, = 6¥ + 6,. Under the LFC 6* =
05, 6% + 61, ..., 0% + 6, 6% + 5,), the power, or probability of an acceptable choice,
may be written as the product 8 = (8,3,, where 8, and 3, are the respective probabilities
that (i) the best treatment is selected at the end of the first stage and dx > X at that point,
and (ii) the hypothesis 6, = 0 is rejected in favor of §, < 6 at the end of the second stage.

Let X, denote the number of successes with treatment k at stage 1, 6, = Xi./n, the
corresponding observed success rate, b(n, 6; -) the binomial probability mass function with
parameters #n and 6, and B(n, 6; -) the corresponding cumulative distribution function. The
explicit formula for stage-1 power under the LFC is

B8 = Pr, (0,( = max 0, experimental treatment K wins the randomization
I <k<K

in case of a tie, and 0 = )\>
n K—1

X X U+ DICK =L )b, 05 + 625 x)

xX=ny j=0

X b(ny, 08 + 615 x)'B(ny, 0% + 6,; x — DA, (1)

where C(K — 1, j) is the combinatoric term for choosing j out of K — 1 treatments and n,
is the smallest integer not smaller than An,. Since fx = Xx/n, = A, the first summation is
over Xy = ny. The index j accounts for the number of suboptimal experimental treatments,
i.e., those having success probability 63 + 6,, which are tied with the best treatment K for
the highest observed response rate after stage 1. The factor (j + 1)™' is the probability
that treatment K wins the randomization among the tied experimental treatments.
The stage-2 power (3, is the usual value associated with the test of 6, = 6 versus 8, < 0x at
alternative 8, = 0%, 6x = 67 + 6,.

The expected total sample size is E(N) = Kn, + w2n,, where = is the probability of

continuing to the second stage. Under the simple null hypothesis 6y = 8, = - - = 05 = 0,
the continuation probability is
T = 1 — {B(f’l;, 02’;, Ny — 1)}1\ (2)

Under the LFC the continuation probability is
Ty = 1 - {B(}’ll, 0: + 6], Ny — l)}K_IB(/’ll, 0?; + 52, Ny — 1) (3)



A Two-Stage Design for Clinical Trials 541

For the designs to be developed here, the power will be calculated under the LFC. One
may question how well such designs perform under other configurations of 6. If more than
one 0, exceeds 6 + 6, and the others are less than or equal to 8% + §,, then the probability
of choosing one of the acceptable treatments will exceed 3. However, these designs are
aimed at choosing one acceptable experimental treatment. The probability of choosing the
best of several acceptable experimental treatments cannot be guaranteed large, especially if
the success probability of the second best is close to that of the best.

Of course, choosing a regimen with response rate in the interval (6% + 6,, 0¥ + 6,) still
represents identification of an improved treatment. If a treatment has a success rate in the
lower portion of the interval, then the probability of selecting it over a superior treatment
(with rate greater than or equal to 6% + §,) will be low. If a regimen has a success rate in
the upper portion of the interval, then choosing it instead of one having rate greater than
or equal to 8% + &, is not a serious error. The following theorem gives a bound on the
power of the procedure in the more general situation where, under the assumption that at
least one experimental treatment has success rate no less than 6F + 6., there may be
treatments with 6, inside this interval.

Theorem 2 1If 0x = 6% + 6,, then the probability of choosing a treatment k with 6, =
0% + 6, is bounded below by 3,8(6,), where 3, is as before and $.(8,) is the stage-2
power at f, = 07 and 6, = 6% + 5,.

Thus, if one is willing to consider a treatment with success rate greater than or equal
to 8 4+ 6, to be acceptable, then the procedure still has power no smaller than
B162(6,). A proof of Theorem 2 is given in the Appendix.

4. Derivation of Designs

4.1 Expected Total Sample Size

A natural criterion for choosing #,, #n,, and cutoff A\ is minimization of the expected
sample size E(N). The expected sample size, however, depends on the success proba-
bilities. If the expected sample size is minimized under the simple null hypothesis 6§, =
6, = -.. =0k =07, then X is very large, so that one is unlikely to proceed to the second
stage. Since the constraint 8,8, = § must be satisfied, the stage-1 power 3, approaches (3
and 3, approaches 1. Hence, minimization of the expected sample size Eq(N) under the
null hypothesis results in a design with an impractically large stage-2 sample size. If the
expected sample size E, (N) under the LFC 6* is minimized, then X is forced to be negative
and a second stage becomes certain. This design has poor performance under the null
hypothesis. A compromise that avoids such extreme designs is to minimize the weighted
average wEo(N) + (1 — w)E,(N). We have adopted this approach. The designs presented
in our tables are based on w = 3, although other weights could be used. This point is
discussed briefly in Section 6.

4.2 Designs for Fixed B

We first minimize E(N) by fixing 6% and 3, with the probabilities 3, and 3, allowed to vary
subject to the constraint 3,8, = 8. Given n, and X, 3, is computed from (1). Note that since
the lower limit of the first summation in (1) is the smallest integer not less than An,, 8, is
a step function in A. The stage-2 sample size n, is then computed via the method
of Casagrande et al. [1978, expression (8)]. Since n, and \ also determine the contin-
uation probabilities given in expressions (2) and (3), E(N) may then be computed. The
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minimization was carried out via a global search with »n, incremented in an outer loop and
E(N) minimized in X for each n,.

4.3 Designs for Both 8 and 8, Fixed

In some circumstances one might wish to specify the power of the stage-2 test, in addition
to the overall power. To accommodate this additional constraint, the preceding approach
may be modified by first fixing 8 and B, at the desired values, with the step function 8,
required to satisfy 8, = (3/8,. The global search is carried out by incrementing », for a
small initial value of X\ until admissible 3, is obtained, then minimizing E(N) in A for this
n,. The minimum is obtained by iterating this procedure. In this case 8, determines #,. If
X were fixed, n; would simply be the smallest value yielding admissible 3, .

5. Results

We shall illustrate the properties of the proposed two-stage design for the cases 6 =
2, .4, .6; 6, = .05; 6, = .20; « = .05; K = 2, 3, 4; and § in the range .70 to .80. Although
power figures of .80 to .90 are common for Phase III trials of a single experimental
treatment, the 8 here represents both selection of the appropriate experimental treatment
and subsequent demonstration that it is significantly better than the control.

For the case with o and S specified, numerical results are presented in Table 1. A range
of values of X is given for each design, since E(N) is a step function of A\. The designs in
Table 1 appear quite practical and have some good properties. First, the selection stage is

Table 1
Designs for fixed power 8 and size a = .05, §, = .05, 6, = .20
03‘ K n,y H> A E()(N) E(N) Nma,\ 1 - ™o 131 62 ﬁ

2 2 28 89  .290-.320 86.6 1503 234  .8280 .8041 .8704 .70
32 97 .285-.310 97.0 168.4 258  .8284  .8381 .8949 .75
40 99 .280-.300 113.0 190.0 278 8326 .8869 .9021 .80

2 3 31 98 .295-320 1335 2024 289 7925 7785  .8992 .70
38 102 .290-.315 149.7 227.0 318  .8245 .8231 9112 .75
45 111 .290-310 1679 256.6 357  .8518 .8580 .9324 .80

2 4 34 105 .295-320 183.1 256.6 346 7740 7631 9173 .70
41 109 .295-315 2059 288.0 382 .8073 .8082 .9280 .75
48 120 .295-310 231.1 3259 432 8362  .8441 .9478 .80

4 2 33 98 .485-.515 1105 1775 262 7725  .8250 .8485 .70
39 108 .490-.510 119.8 198.6 294 8063 .8515 .8808 .75
47 119 .490-510 131.3 2241 332  .8430 .8800 .9091 .80

4 3 38 111 .505-.525 1620 2393 336 7828 7876  .8888 .70
44 123 .505-520 1779 2683 378 8123 . .8182 9166 .75
51 129 .495-.505 205.7 3025 411 7952 8612 9290 .80

4 4 40 120 .505-.525 2237  304.1 400 7341 7681 9113 .70
48 128 .505-.520 248.0 3403 448 .7795  .8099 9260 .75
56 142 .505-515 275.6 3845 508  .8172  .8437 .9482 .80

6 2 26 86 .695-.730 91.3 1493 224 7717 .8148 8591 .70
32 90 .690-.715 102.8 166.6 244 7822 8612 .8709 .75
39 99 .695-.715 111.1 1873 276  .8313 8875 9014 .80

6 3 30 94 .705-.730 138.1 200.6 278 7436 7885 .8878 .70
37 100 .705-.725 151.1 2239 311 7987  .8288  .9049 .75
43 107 .700-.720 170.6  251.7 343 8055 .8661 9237 .80

6 4 34 99 .710-.735 187.6 2537 334 7379 .7763 9017 .70
41 105 .710-730 207.3 283.8 374 .7919 8178 9171 .75
47 113 .705-.720 233.7 3192 414 7976  .8545 .9362 .80
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relatively small; the values of #, are in the range commonly employed in clinical oncology
for uncontrolled Phase II studies. Of course, smaller values of 6, — 8, would require larger
stage-1 sample sizes, but the value 6, — 6, = .15 employed here is applicable in many
situations.

The stage-2 sample sizes and powers are also consistent with those employed in many
Phase III trials. The stage-2 power (3, is greater than the stage-1 power G, (the LFC
probability of selecting the one acceptable treatment K and concluding a second stage), and
this condition maintains small expected sample size when the null hypothesis is true. The
probability 1 — o of stopping after the first stage when the null hypothesis is true is very
high, ranging from .73 to .85 for the designs in Table 1. This is a very desirable characteristic,
since we would not wish to allocate 2x, additional patients to a second stage in such
circumstances. Although the power and the probability of proceeding to the second stage
are calculated for 8 = 6%, the Type I error rate « is never exceeded for any 6,. It is also
interesting to note that the derived values of the cutoff criterion A used for determining
whether to proceed to the second stage all are approximately 8 + .10, for these &, and 6.
This result, as well as the observed relationship between 8, and 8., could be used to
heuristically generate nearly optimal designs for other values of 6% in the range .2 to .6,
given 6, = .05 and 6, = .20.

Some statisticians might take the view that the second stage should be designed with a
power of .80, say, regardless of the size of the first stage and regardless of the chance that
the first stage might have failed to select an appropriate regimen. Table 2 shows results for

Table 2
Designs for fixed power B, stage-2 test power §3,, and size o = .05, §, = .05, 6, = .20, §§ = .20,
subject to B, = B/B:

mo A EofN) ENV) Nuw 1= B B g8

2 37 74 .275-.295 103.2 158.4 222 .8017 .8800 .80 .70
34 84  .295-.320 88.1 152.7 236 8797 8235 .85 .70
30 98  .305-.330 83.2 155.5 256 8816 7923 .90 .70

51 74 .255-.270 136.6 191.9 250 7644 9380 .80 75
35 84  .260-.285 115.3 173.4 238 7298 .8848 .85 5
32 98  .285-310 97.6 170.2 260 .8284 .8381 .90 75

54 84  .260-.275 141.9 207.6 276 1978 9423 .85 .80
43 91 .260-.275 131.6 197.0 268 7473 9162 875 .80
38 98  .265-.285 120.8 192.5 272 711 8921 .90 .80

3 45 74 .270-.285 174.7 226.9 283 7203 8787 .80 .10
36 84  .280-.305 148.8 208.2 276 7563 8266 .85 .70
31 98  .295-.320 133.6 202.7 289 71925 7785 .90 .70

67 74  .270-280 2274 287.1 349 .8202 9389 .80 75
48 84  .275-.290 182.7 245.3 312 7691 . .8874 .85 5
41 98  .295-315 152.0 228.8 319 8517 8340 .90 5

68 84  .265-275 2380 304.2 372 1974 9420 .85 .80
58 91 .280-.290  203.8 277.4 356 .8345 9151 875 .80
51 98  .275-.290 191.6 267.9 349 .8026 8953 .90 .80

4 52 74 .270-285  250.5 301.9 356 111 .8763 .80 .70
43 84  .280-.300  216.0 275.5 340 71374 8318 .85 .70
37 98  .300-.320 185.4 2577 344 .8086 7785 .90 .70

75 74 .270-280 3324 389.5 448 7796 9377 .80 5
55 84  .275-290  261.8 323.6 388 7509 .8855 .85 5
46 98  .285-.300 2279 300.8 380 1756 .8436 .90 5

79 84  .280-.290  337.6 410.0 484 8711 9417 .85 .80
67 71 .285-295 2924 368.9 450 .8647 9148 875 .80
59 98  .290-.305  263.0 344.8 432 .8618 .8891 .90 .80
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the case with 3, specified in advance along with « and 8, for 85 = .20. In order to achieve
the same overall 8 in Table 2 compared to Table 1, larger values of 3, tend to be required
in Table 2.

Table 3 compares the two-stage designs developed here with some single-stage designs
previously studied by Dunnett (1984), for ¥ = .2. Although Dunnett’s designs provide
more information about experimental treatments not chosen as best, their performance
under the null hypothesis is much inferior to the two-stage designs. While the maximum
sample size of this procedure exceeds that of Dunnett for K = 2, when K = 3 or K = 4
even our maximum sample size is about the same as or less than Dunnett’s. The comparison
of these two classes of designs is imperfect, however, because the two designs do not provide
the same power for alternatives other than the LFC and because Dunnett employed normal
approximations that are known to overestimate power in other circumstances (Casagrande
et al., 1978). Analogous comparisons for 8% = .4 and 67 = .6 yielded very similar results.

Table 3
Comparison of required sample sizes for Dunnett’s single-stage and
proposed two-stage designs at « = .05, §, = .20, §, = .05, 6, = .20

Dunnett Two-stage
B8 N, Eo(N) E(N) Nonas
K=2 .70 189 86.6 150.3 234
75 213 97.0 168.4 258
.80 240 113.0 190.0 278
K=3 .70 284 133.5 202.4 289
75 316 149.7 227.0 318
.80 356 167.9 256.6 357
K=4 .70 385 183.1 256.6 346
75 425 205.9 288.0 382
.80 475 231.1 325.9 432

6. Discussion

The numerical results for the proposed two-stage designs are encouraging. A key to the
potential usefulness of this design is the very high probability of early termination at the
end of stage 1 when the global null hypothesis is true. A less quantitative, but equally
important feature, is the potential improvement in practical trial design resulting from
selecting which experimental treatment to test based on a randomized first stage rather
than on multiple uncontrolled pilot studies. There are advantages to both approaches, but
increased use of randomized pilot studies would be beneficial (Simon, Wittes, and Ellenberg,
1985). .
This design is obviously not applicable to all clinical situations. First, we have assumed
that the outcome is binary and observed soon enough after initiation of treatment to allow
the interim stage-1 decision. The binary outcome assumption could be relaxed, but the
need to make decisions based on data observed relatively soon after treatment limits the
applicability of this approach when the outcome is survival. In some clinical trials, there is
interest in determining the effectiveness of each experimental treatment relative to the
control. Our design is not appropriate in such situations. However, one must recognize
that the usual designs for evaluating K experimental treatments and a control do not
address the issue of selecting among regimens that are found to be improvements.

Since the numerical values of the stage-1 cutoff A are all approximately 6% + .10, the
stage-1 power depends on the initial value 6% of 8,. If 6% is above or below the true value
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of 6, the actual value of 8, will be below or above its nominal value, respectively. Thus, if
the value of 8¢ is taken to be too high, this has the consequence of setting a stage-1 cutoff
that is above the supposed value, hence increasing the probability of missing an improve-
ment over the control at stage 1. In contrast, if 8% < 6y, there is an increased risk of carrying
out a stage-2 comparison when ideally one would wish to terminate the trial early. At stage
2, the effect of incorrectly specifying 6% is the same as in a conventional test based on
binomial data, since 67 appears as a nuisance parameter in 3,.

The minimization of E,(N) was carried out under the prior placing equal weights on 6,
and 6*. More elaborate priors could be used. One possible approach would be to take 6, to
be beta on an interval centered around 6¥, and 6,, ..., 6x beta on a larger interval
containing both 6 and 6¥ + §,, with all K + 1 parameters mutually independent.
Alternatively, one could attempt to elicit priors without specifying a functional form.
However, prior distributions for treatment effects generally are quite variable among
clinicians. Hence, tabulation of results for a limited set of priors did not seem useful. If one
regards our objective function from a Bayesian viewpoint, placing equal weights on the
null and LFC values of 8 does reflect a rather simple and easily understood prior. However,
our aim in selecting an objective function was simply to obtain practical designs with
appealing properties.

Some related designs should be mentioned. Whitehead (1986) considered the problem
of selecting among experimental treatments and then comparing the selected treatment to
a randomized control. His design, however, does not permit early termination after the
first stage. His approach is Bayesian and requires that a prior distribution be specified for
the success probabilities of the experimental treatments. Whitehead assumes that there are
a large number of experimental treatments and seeks to quantify the tradeoff between more
treatments and more patients per treatment arm for a fixed total number of patients.
Whitehead’s formulation is motivated by a particular type of clinical situation in which
patient numbers are limited relative to the large number of treatments available for study.
It is an interesting approach, but would not apply to many clinical situations for which the
design presented here would be appropriate.

Ellenberg and Eisenberger (1985) and Lan, Simon, and Halperin (1982) have developed
designs that permit early termination of a trial when interim results for an experimental
treatment are not sufficiently promising. Although studied only for the case of a single
experimental treatment, their approaches could be generalized for interim comparison of
each experimental treatment to the control. Thall, Simon, and Ellenberg (1988) have
proposed a design, similar to that studied here, which includes a control arm at the first
stage. This results in a larger overall stage-1 sample size, larger Eo(/V), and smaller expected
sample size under the alternative, since stage-1 data are utilized in the final comparison of
the selected experimental treatment to the control. However, such an approach may be less
appropriate under the circumstances described earlier, where experimental treatments are
frequently found to offer no improvement over the standard therapy. Furthermore, the
concept of requiring evidence of promise for a regimen before starting a randomized
comparison to a control is appealing to many clinical investigators. Consequently, the two-
stage design proposed here may be more acceptable in many situations than designs that
employ a control from the start. In either case, incorporation of the selection process into
the randomized trial should serve to reduce potential selection bias and confounding while
controlling overall error probabilities.
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RESUME

L’évaluation de plusieurs nouveaux traitements par des essais thérapeutiques peut étre considéré
comme I’identification du meilleur d’entre eux et la comparaison de ce dernier a un traitement de
référence. Néanmoins, il n’est pas souhaitable de débuter un essai comparatif sans s’étre assuré d’une
efficacité suffisante des nouvelles thérapeutiques. Nous proposons un plan d’expérience en deux
phases. Dans un premier temps, les patients sont randomisés entre les nouveaux traitements. Celui
permettant d’obtenir le taux de succés le plus élevé est retenu. Si ce taux est inférieur a un seuil fixé
au départ, I’essai est terminé. Sinon, au cours d’une deuxiéme étape, le “meilleur” des nouveaux
traitements est comparé au traitement de référence. Les valeurs optimales du seuil et des effectifs
nécessaires aux phases un et deux sont obtenues en minimisant I'effectif attendu de I’échantillon
total. Ce plan d’expérience a une puissance élevée et la probabilité de conclure précocement est
importante quand aucun des nouveaux traitements n’est supérieur au traitement de référence. Des
exemples d’utilisations de ce plan d’expérience sont présentés et comparés a la procédure optimale
en une étape de Dunnett (1984, dans Design of Experiments: Ranking and Selection, T. J. Santner
et A. C. Tamhane (eds), 47-66; New York: Marcel Dekker).
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APPENDIX
A.1 Proof of Theorem 1
Write 05 = 6, for convenience. Let 4 = {k = 1: 6, = 6, + 6.}, the set of indices of acceptable
experimental treatments, so that 4 U 4 = {1, ..., K}. For given 0,

Pr,(Acceptable choice) = Pry(Reject at stage 2 | Acceptable selection at stage 1)
X Pry(Acceptable selection at stage 1)
=(:(0)5.(0).

Note that 8, depends on 6 only through 6, and the selected treatment’s success rate 6,. Denote the
cardinality of 4 by | 4| = m, so that | A°| = K — m. For simplicity assume 4° # J, i.e., K—m = 1,
since the case 4° = & is subsumed trivially by the argument to follow. We have assumed K € A4, so
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1 < m < K — 1 and consequently the LFC must satisfy the general condition
0y -+ <Ok < b+ 0, Oo + 02 < Og—jpsr < -+ < O (B)

Recall that 3,(8) is the probability under 8 that max{X;: k € A} = max{n,, max{X;: j € 4°}} and an
element of 4 wins the randomization if there is a tie. But max{X,:k € 4} and max{X;: j € 4} are
stochastically increasing in each element of {,: kK € 4} and each element of {¢,: j € A}, respectively.
[A random variable W is stochastically increasing in parameter « if Pr,(W > ¢) is a nondecreasing
function of v for all values of ¢.] Thus, 3,(6) must be minimized among @ satisfying condition B at
0y="--=0x_, =0+ 6 and Oy_,,+, = - - - = 0 = 6y + 6,. It thus remains to show that minimization
in m occurs at m = 1, since (8.(8) already is minimized when 6, achieves its lower bound 6, + é,, for
acceptable treatment v.

Suppose m> 1. Let U,, ..., Uy be independent random variables identically distributed uniformly
on [0, ], where ¢ is a fixed number between 0 and 1. Defining Y, = X, + U,, we may express

B1(0) = Pry[max{Y;: k € A} > max{ny, max{Y;: k € A}}],

since replacing each X, by Y, does not alter any inequalities among the X,’s but acts as a fair
randomization device in the case of a tie. If one element is removed from 4 and placed into A4, this
has the effect of stochastically decreasing max{Y,: k € 4} and stochastically increasing max{Y;: k €
A<}, thus decreasing 8,. The minimum is achieved by iterating until only m = | element remains
in A4.

A.2 Proof of Theorem 2

LetAy=t{k=1:0,<6,+6,},4 =tk=1:0,+ 6 <0, <0,+ 8}, and A, = A4 as given in the proof
of Theorem 1. We take {4,, 4,, A-} to be a partition of {1, ..., K}, with any index k having 6, on a
boundary placed either way without loss of generality. Define M, = max{Y;: k € 4;}, i =0, 1, 2,
where Y, is the version of X, as given in the previous proof. An acceptable selection occurs at stage 1
if max{M,, M.} > max{M,, n,}. As before, M, is stochastically increasing in 6, for each k € 4;, i = 0,
1, 2; hence, the probability of an acceptable choice is bounded below by taking 6, = 6, + 6, for
all k € 4,, and 6, = 0, + 6, for all k € A, U A4,, then switching elements from 4. to A, U 4,, until
A, = {K]}. Since 8, > $.(6,), the desired result follows.



