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Nomograms for Calculating the Number of Patients
Needed for a Clinical Trial
With Survival as an Endpoint

David A. Schoenfeld and Jane R. Richter
Sidney Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115, U.S.A.

SUMMARY

This paper presents nomograms for calculating the sample size for a clinical trial with survival as an
endpoint. The nomograms are valid when survival is exponential and patients enter the study
uniformly.

1. Considerations Affecting Sample Size

This paper presents nomograms for determining the number of patients necessary for a
clinical trial when the endpoint is a time measurement that is exponentially distributed.
Nomograms are given for one-sided and two-sided tests with significance level, a, equal to
.05, and power, 3, equal to .8 and .9. These values are those most often used in designing
clinical trials although some authors (Brown, 1980; M. Zelen, personal communication)
have suggested that lower values of a be used. A method is also presented for determin-
ing sample size when significance levels are .01 and .025, and when B differs from .8 or .9.
There are three additional quantities which determine sample size. These are treatment
difference, R, accrual time, A, and follow-up time, F.

A clinical trial is designed to have power B at a specified treatment difference. If m,
and m, are the median survival times of patients on the two treatments then this
difference can be expressed by R =m,/m;. Often R is chosen to be the minimum
difference between the treatments that would represent substantial patient benefit, or R is
chosen on the basis of data from other clinical trials of the same treatments. In many trials
of cancer treatments R is chosen to be 1.5, since a 50% increase in survival is regarded as
being clinically important and biologically feasible.

The accrual period is the period during which patients enter the trial. We assume that
patients enter uniformly during this period. The follow-up period is the period from the
entry of the last patient until the data are analyzed. The duration of both these periods
determines the proportion of patients who will die before the data are analyzed.

2. Using the Nomograms

Figures 1 and 2 are used when the power is chosen to be .8 or .9, respectively. Figure 3 is
a more complicated nomogram which can be used to find the sample size needed to
achieve any power and to find power as a function of treatment difference. We will first
describe how to use Fig. 1 and Fig. 2, which should be sufficient for most clinical
applications.

Key words: Censoring; Failure time; Nomograms; Sample size; Survival.
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Figure 1. Number of patients per treatment group; a =.05, B =.80. Dashed line: two-sided tests.
Solid line: one-sided tests.

To determine sample size, first calculate the average median survival of all patients on
the trial under the alternative hypothesis, 3(m, +m,), and divide the follow-up time and
the accrual time by this number. Then mark these numbers on the ‘accrual period’ axis
and ‘follow-up period’ axis in the lower part of the nomogram. Draw a line through the
mark on the ‘accrual period’ axis parallel to the ‘follow-up period’ axis, and another line
through the mark on the ‘follow-up period’ axis parallel to the ‘accrual period’ axis. These
lines are shown in the example in Fig. 4. Draw a vertical line through the point where
these two lines cross. Choose the appropriate treatment difference R and the direction of
the test (one-sided or two-sided) and note where the vertical line that was just drawn
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Figure 2. Number of patients per treatment group; a =.05, 8 =.09. Dashed line: two-sided tests.
Solid line: one-sided tests.

crosses the appropriate curve. The number of cases needed for each treatment group can
then be read from the ‘number of patients’ scale directly across from this point. It is
difficult to determine accurately sample sizes over 300 by use of the nomogram. However,
the results beyond 300 should be accurate enough to determine the feasibility of a study.
As an example, suppose that a trial will permit accrual for two years and have one
additional year of follow-up. Suppose that the median survival on the standard therapy is
11.0 months and that we want to detect an improvement of 50%, to 16.5 months. The
accrual period is 24.0/13.8=1.7 and the follow-up period is 12.0/13.8 =.87. We mark
these points on the triangle as shown in Fig. 4, and draw the lines indicated there.
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Figure 3. Number of patients per treatment group. The three vertical scales on the right give values
of B corresponding to one-sided significance levels a = .05, .025 and .01.

Assuming that we plan to perform a one-sided test, we use the solid curve labeled
‘R=1.5" and read off the sample size of 110 patients directly to the left of the point
where it crosses the vertical line that has just been drawn.

To use Fig. 3 we start by following the previous procedure to determine sample size.
The choice of curve is dictated by the significance level that we desire. The lowest curve is
used for a one-sided level of .05 or a two-sided level of .10, the second curve for a
one-sided level of .025 or a two-sided level of .05, and the third curve for a one-sided
level of .01 or a two-sided level of .02. The number of patients found will be appropriate
for R=2.0 and B =.8. To find the number of patients for a different value of R we
measure the distance between the new value of R and 2.0 on the R-scale, and then
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Figure 4. Example using Fig. 1.

transfer this distance to the ‘number of patients’ scale. For example, suppose 60 patients
were required when R=2.0. If R were 1.4, then 250 patients would be needed. This is
shown by the dashed lines from the R-scale to the ‘number of patients’ scale in Fig. 5. To
change the value of B we measure the distance from .8 on the a-scale (corresponding to
the value of a chosen) to the desired value of B, then we transfer this distance to the
‘number of patients’ scale. This procedure is not illustrated in Fig. 5. To change 8 and R
we apply these procedures sequentially.

The vertical scales in Fig. 3 can be used to investigate how changes in R will affect
power. First, mark on a piece of paper the distance between the old value of R and the
new value. Then set the point corresponding to the new value on the old value of 8 and
read the new value off the scale. Remember that a decrease in R will yield a decrease in
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Figure 5. Example using Fig. 3 (without ‘accrual’ and ‘follow-up’ scales).

power. The dashed lines from the R-scale in Fig. 5 to the .05 scale show how a decrease
in R from 2.0 to 1.8 will cause the power to drop from .8 to .68.

3. Justification of the Nomograms

Assume that each treatment has exponential survival with parameter ;. Let ¢; be the total
time on study and g; be the number of deaths on Treatment j. Then the maximum
likelihood estimate of 6; is a;/t; and its variance is approximately 6;/a; (see Kalbfleisch and
Prentice, 1980, pp. 48-54). Thus the variance of In(a;/t;) is approximately 1/a; (see Bickel
and Doksum, 1977, p. 28) and T =In(t,a,/t,a,)(a;'+a;") % can be used to test whether
Treatment 2 has better survival than Treatment 1.

Under the null hypothesis T will have a unit normal distribution. Let p; be the
probability that a randomly-selected patient accruing on Treatment j will die before the
trial is analyzed. Then under the alternative hypothesis, for large n, the variance of T is
one and the mean of T is n¥(In R)(p;*+p5') 7% Let ® be the normal distribution function.
Then the power of the level-a test based on T, with n patients on each treatment, is
approximately

B=o{n!(In R)(pi'+p;") -0 '(1-a)}.
Thus, sample size is computed by
n={®"'(1-a)+® ' (B)}*(In R)*(p1"' +p2").
Furthermore,
pi =1-P(A)G;(F),

where P;(A) is the probability that a patient lives to the end of the accrual period and
G;(F) is the probability that a patient lives from the end of the accrual period to the end
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of the follow-up period. These functions can be found by double integration with respect
to an exponential density function for survival and uniform density function for censoring.
They are

P(A)={1—exp(—.69A/m)}/(.69A/m,), (1)

G;(F) =exp(—.69F/m;). 2)

Let P(A) and G(F) be (1) and (2) with 3(m,+m,) substituted for m;, and let p be
1—P(A)G(F). The value of p will be between p, and p,, so we will approximate n by
using 2p~! as an approximation for p;'+p5'. These two numbers differ by less than 2%
in the range of the nomogram. Thus

n={®"(1-a)+® '(B)}*(In R)*(2p~").

The nomograms are constructed as follows: The bottom left scale is —In P(A) X2 and
the right scale is —In G(F)x2/v/3. Since the lower triangle is a 30° right triangle, the
vertical line that is constructed will intersect the horizontal axis at the point

x =—In{P(A)G(F)}=—In(1—p).

The tick marks on the horizontal axes are .1,.2,...,.9 and indicate this approximation to
the probability of death during the trial. The curves in the figures are then computed by

n={®d'1-a)+d ' (B)(In R) 2x2x(1—e ).

Figure 3 has an additional vertical scale which is (In 2/In R)? on the same scale as n. It has
three horizontal scales which are {®~ (1 —a)+® (B /{DP (1 — )+ D (.8)}* for a = .05,
.025 and .01. Multiplication by these factors is accomplished by addition, since n is
plotted on a log scale.

4. Discussion

Since the logrank test (Peto and Peto, 1972; Mantel, 1966) is fully efficient, the
nomograms are approximately correct when exponential survival data are to be analyzed
by the logrank test, as well as when the data are to be analyzed parametrically.

Two other methods are often used to determine the sample size necessary for a clinical
trial. One can calculate the number of deaths in each treatment group that will be
required, rather than the number of patients. The formula is

d=24d7'(1-a)+d'(B)F*(In R)>.

If one has decided to wait until 80% of the patients are dead to analyze the data, then one
can divide d by .8 and use the resulting value as the sample size. This method is
appropriate whenever the survival on both treatments is poor.

Often the treatments are compared in terms of the proportion of patients who die
before a fixed time t, after their entry in the trial. This method has the advantage of not
requiring the assumption of exponentiality. Letting p; be the death rate on Treatment j,
the required sample size is

n 2{q)_1(1 —a) +¢_1(B)}2(p1 - pz)iz{Pl(l —p1)tp(1- p2)}
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if there is little censoring before t,. In exponential samples this procedure will require
larger sample sizes than the method previously described, although the loss of efficiency
will be slight if ¢, is near the end of the trial and the proportion of deaths at ¢, is less
than .5.
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RESUME

Cet article présente des nomogrammes pour le calcul de I’effectif de I’échantillon pour un essai
clinique portant sur la survie. Les nomogrammes sont valides quand la survie est exponentielle et
que les malades entrent dans I’étude uniformément.
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